Lightmap reconstruction in nEXO with an internal 127Xe source

Clarke Hardy
on behalf of the nEXO collaboration
Light Detection In Noble Elements (LIDINE)
September 15, 2021
Background: the nEXO Experiment

- Single phase time projection chamber (TPC) to search for neutrinoless double beta decay
- 5 tonnes liquid xenon enriched to 90% in ^{136}Xe
- Half-life sensitivity $> 10^{28}$ years

[arXiv:2106.16243]
Charge & Light Reconstruction

- Long drift length
 ⇒ **electron lifetime** correction

- Variation in photon transport efficiency
 ⇒ **lightmap** correction

- External gamma sources
 - Easy to deploy
 - Calibration over full energy range of interest
 - No risk of introducing backgrounds
 - Strong attenuation in skin xenon
 - Sacrifices livetime

- Internal alpha sources
 - Excellent resolution (~1%)
 - Illumination of entire detector volume
 - Sacrifices livetime

1.2m drift length
Internal Calibration Sources: 127Xe

- Electron capture to excited states of 127I
- 36 day half-life, Q = 662 keV
- Mixes uniformly throughout TPC
- Aim for ~1 Bq activity during calibration period
- No sacrifice of livetime required

![Geant4-simulated energy spectrum](image)
127Xe Charge & Light Production

- Intrinsic peak width of ~10% due to recombination fluctuations
- Low energy peak near nEXO threshold of ~200 keV
- High energy peak well above threshold
- Well below 0vBB ROI

Substructure smeared into two peaks
Activation & Counting

- ^{127}Xe produced by neutron capture on ^{126}Xe
- Sample cylinder containing 70g $^{\text{nat}}\text{Xe}$ gas ($\sim0.1\%^{126}\text{Xe}$) irradiated at MNRC nuclear reactor facility
- Radioassay at MNRC & Stanford, HPGe counting at U. of Alabama to determine activity

Dominant activity after ~100 days is from ^{127}Xe
Preliminary Results from Stanford TPC

- Injected 127Xe during recirculation
- Delayed increase in trigger rate as 127Xe mixes into TPC volume
- Events from both peaks clearly visible
- Full electron lifetime calibration results to be published soon

Maximum drift time

Minimum drift time

127Xe lines @ 200 & 400 keV

e-lifetime ≈ 55us
Lightmap Reconstruction from Calibration Data

1. Compute efficiency for each event
2. Feed \((x, y, z, \text{eff})\) into a function that fits efficiency throughout entire volume
3. Produce continuous map of light collection efficiency
Lightmap Reconstruction from Calibration Data

1. Compute efficiency for each event
2. Feed \((x, y, z, \text{eff})\) into a function that fits efficiency throughout entire volume
3. Produce continuous map of light collection efficiency
Lightmap Reconstruction from Calibration Data

1. Compute efficiency for each event
2. Feed $\{x, y, z, \text{eff}\}$ into a function that fits efficiency throughout entire volume
3. Produce continuous map of light collection efficiency

![Diagram showing the process of reconstructing a lightmap from calibration data.](image)
Lightmap Reconstruction from Calibration Data

1. Compute efficiency for each event
2. Feed \((x,y,z,\text{eff})\) into a function that fits efficiency throughout entire volume
3. Produce continuous map of light collection efficiency

Histogram
Spline fit
Neural net

Layers: [512,256,128,64,32]
Batch size: 64
Learning rate: 4e-4
Epochs: 10
Simulating 127Xe Data in nEXO

- Simulations using Geant4-based \texttt{nexo-offline} simulation package
- Detailed geometry and NEST software to model charge and light production in TPC
- “Truth” lightmap produced using Chroma, GPU-based ray tracing software
- \textbf{Binomial sampling} of detected photons for each simulated event
- \textbf{Poisson fluctuations} added, representing correlated avalanches

![True Lightmap](image)
Cuts & Peak Selection

- 20 mm standoff cut
- Diagonal peak selection cut in raw detected photons & detected electrons
- Scale efficiency by the expected number of scintillation photons from NEST
- Adding lower energy peak doubles the number of calibration events

Uncorrected light signal smeared by position dependent photon transport efficiency
Results - Reconstructed Lightmap

- Systematic errors that depend on the true lightmap
 - With few training events, NN tends toward uniformity
 - Regions of greater deviation have larger systematic reconstruction errors
 - Errors recede with more calibration events, and are outside inner 2 tonnes
Results - Uncertainty in Reconstructed Lightmap

- 0.5% error in inner 2 tonnes with 1M events (~2 weeks at 1 Bq)
- Improvement slows with larger datasets as calibration data is limited by source width
- Systematic errors visible in smaller datasets disappear with more events
- Significantly better performance toward TPC center where penetration of external gammas is limited
Conclusions

- nEXO requires position-dependent calibrations of the light response to optimize energy resolution
- An internal 127Xe source avoids some of the drawbacks of other sources
- Activation and implementation of an internal 127Xe source has been studied at Stanford
- Simulations of 127Xe decays in nEXO have been used to project the reconstructed lightmap accuracy for various dataset sizes
- At 1 Bq, 0.5% lightmap error in inner 2 tonnes achievable in ~2 weeks
The nEXO Collaboration
The nEXO Collaboration