Conveners
Applications (1A)
- Kaixuan Ni (Lidine 2021)
The Liquid Argon Time Projection Chamber (LArTPC) represents one of the most advanced experimental technologies for physics at the Intensity Frontier due to its full 3D-imaging, excellent particle identification and precise calorimetric energy reconstruction. Reviewing current experimental efforts and potential technology upgrades, this talk summarizes the exciting physics we can explore...
Particle detectors with noble element targets have grown increasingly popular in rare event search physics experiments. The use of noble gases as the interaction medium enables high purity, large mass, and multi-channel signal detection in these experiments. When operated underground, noble element detectors have achieved extremely low background levels, and unprecedented sensitivity to rare...
The fundamental nature of our universe is still mostly unknown: 84% of the matter in the universe is dark and qualitatively different to everything we understand via the Standard Model. Terrestrial experiments devoted to detecting interactions of dark matter particles have not yet seen a convincing signal, but we may be on the cusp of discovery. The LUX-ZEPLIN experiment (LZ) will be the...
The nEXO experiment is a proposed next-generation search for the neutrinoless double beta decay ($0\nu\beta\beta$) of Xe-136. The detector will be a 5-tonne, monolithic liquid xenon TPC with a target enriched to 90% in the isotope of interest. In this talk, we will discuss a new evaluation of the experiment’s sensitivity to $0\nu\beta\beta$, given recent updates to the detector design and...
I will describe GammaTPC, a proposed new LArTPC MeV gamma ray instrument concept. The MeV gamma ray sky is essentially unexplored due to the challenge of measuring multiple Compton scatters over a large detector volume. A TPC with low Z material has significant advantages for this measurement, and enables a relatively inexpensive detector with large mass and thus high sensitivity in the...