Conveners
Light/Charge Response (2A)
- Masayuki Wada (AstroCeNT)
Xenon scintillation has been widely used in recent particle physics experiments. However, information on primary scintillation yield in the absence of recombination is still scarce and dispersed. The mean energy required to produce a VUV scintillation photon (Wsc) in gaseous Xe has been measured to be in the range of 30-120 eV. Lower Wsc-values are often reported for alpha particles when...
In standard conditions, Xenon is the only gaseous element with a naturally occurring isotope undergoing double-beta decay. Hence exploiting a gaseous TPC as a tool for accurately reconstructing the topology of bb0nu events is very natural. When considering i) sensitivity to the lifetime of the decay and ii) energy resolution to separate it from regular bb2nu events, a high pressure...
Experiments used for rare-event searches have seen an impressive increase of sensitivity over the past decades. Among the most sensitive detector types used in direct dark matter searches are dual-phase xenon time projection chambers (TPCs). To develop a signal model for such detectors, the response of the medium to interactions of different particle types needs to be known to a high accuracy....
Liquid argon (LAr) is widely employed as a scintillator in rare-event searches. Its optical and scintillation properties, as well as the impact of impurities, are being studied extensively by many groups world-wide. LAr scintillation light exhibits a main emission wavelength of 128 nm, which makes propagation and detection challenging because of short attenuation lengths and low quantum...
The two-phase liquid/gas xenon time projection chamber is one of the leading technologies for dark matter direct detection. A crucial part of using this technology is being able to classify energy deposits as nuclear recoils (NR) or electronic recoils (ER). This allows upcoming experiments like XENONnT and LZ to mitigate ER backgrounds like Rn daughters and solar neutrinos. I will present an...
Superfluid He-4 is a promising target material for direct detection of low mass (< 1 GeV) dark matter. Signal channels for dark matter - nucleus interactions in superfluid helium include prompt photons, triplet excimers, rotons and phonons, but measurement of these signal strengths have yet to be performed for low energy nuclear recoils. A study of scintillation yield from electronic and...
Utilizing xenon as a dopant at the $10^{-5}$ level in the gas region of a dual-phase argon time projection chamber (TPC) presents the enticing prospects of faster and longer wavelength electroluminescence response to ionization electrons. This light can then be directly detected by UV-sensitive SiPMs without the use of fluorescent wavelength-shifting materials. These advantages would improve...