Conveners
Applications (2B)
- Liang Yang (UC San Diego)
The LEGEND-200 experiment at LNGS will search quasi-background free for the neutrinoless double-beta decay in $^{76}$Ge. Bare high-purity Ge detectors enriched in the isotope $^{76}$Ge are operated in liquid argon, which serves as a coolant and active shielding. Background events are identified by their interaction typologies. The key to search background-free for $0\nu\beta\beta$ decays is...
NEXT is a staged experimental program aiming at the detection of neutrinoless double beta ($\beta\beta0\nu$) decay in $^{136}$Xe using successive generations of high-pressure gaseous xenon time projection chambers. The collaboration is presently concluding four years of operation of NEXT-White, a radiopure 50-cm diameter and length TPC operated with enriched xenon at 10 bar, at the Laboratorio...
PETALO (Positron Emission Tof Apparatus with Liquid xenOn) is a novel concept for positron emission tomography scanners, which uses liquid xenon as a scintillation medium and silicon photomultipliers as a readout. The large scintillation yield and the fast scintillation time of liquid xenon makes it an excellent candidate for PET scanners with Time-of-Flight measurements. In this talk I will...
This talk will present results from the first liquid xenon dataset of the Light only Liquid Xenon (LoLX) experiment, collected in June of 2021. LoLX aims to investigate both scintillation and Cherenkov light emission in liquid xenon for applications in rare event searches and PET. The detector consists of 24 Hamamatsu VUV4 Silicon Photomultipliers (SiPM) arranged in an octagonal cylinder. A...
Positron Emission Tomography (PET) is used to observe metabolic processes within patients. It works by reconstructing the annihilation origin of incident gamma rays produced by a positron emitting tracer. However, inefficiencies of current PET technology, such as the use of photomultiplier tubes, can result in poor imaging. In addition, current PET scanners possess a small field of view which...
HeRALD, an experiment within the SPICE/HeRALD collaboration, is a proposed sub-GeV scale dark matter detector based on a target of superfluid helium 4 and monitored by a Transition Edge Sensor based readout system. Several promising readout channels exist, including through monitoring quasiparticle (phonon and roton) and atomic (singlet photon and triplet) excitations. The quasiparticle...
The Scintillating Bubble Chamber (SBC) Collaboration is developing noble liquid bubble chambers for the detection of sub-keV nuclear recoils, enabling both high-exposure GeV-scale dark matter searches and CEvNS measurements using reactor neutrinos. Nuclear recoils (NRs) in these chambers produce both a single bubble and a coincident flash of scintillation light, while electron-recoil (ER)...
The COHERENT collaboration has deployed a suite of low-threshold detectors in a low-background corridor of the ORNL Spallation Neutron Source to measure coherent elastic neutrino nucleus scattering (CEvNS) on an array of nuclear targets employing different technologies. This has produced CEvNS cross section measurements with CsI and liquid argon scintillator detectors. These measurements...
With radiopurity controls and small design modifications a kton-scale liquid argon time projection chamber similar to DUNE could be used for enhanced low energy physics searches. This includes improved sensitivity to supernova and solar neutrinos, and even weakly interacting massive particle dark matter, and a possibility of 0nubb detection with large Xe316 doping. This talk will present...
The PIP-II complex at Fermilab is slated for operation later this decade and can support a MW-class $\mathcal{O}$(1 GeV) proton fixed-target program in addition to the beam required for DUNE. Proton collisions with a fixed target could produce a bright stopped-pion neutrino source. The addition of an accumulator ring allows for a pulsed neutrino source with a high duty factor to suppress...