Conveners
Light/Charge Readout (3B)
- Denver Whittington (Syracuse University)
The Deep Underground Neutrino Experiment (DUNE) is currently investigating a new prototype design for its second Far Detector module. The new concept proposes a Vertical Drift LArTPC, with a cathode at mid-height in the detector and anodes made of printed circuit boards, located at the top and bottom of the detector.
In this context, the design of the Photo-Detection System (PDS) needs to be...
Organic semiconductors have gained considerable attention in recent years for use in a wide range of applications from OLEDs, OFETs, to optical sensors. They can be prepared on rigid as well as flexible substrates over large areas through low-cost fabrication techniques with performance rivaling low-noise silicon photodiodes. These properties make them a potentially attractive option for...
Large volumes of liquid Argon or Xenon constitute an excellent medium for the detection of Neutrino interactions and for Dark Matter searches. The established readout method for large noble liquid detectors is based on charge collection in a Time Projection Chamber, triggered by the scintillation light produced by Ar (128~nm) or Xe (185~nm).
This scintillation light can however also be used...
We present a design concept and preliminary results for a method to increase the light collected by a sparse array of SiPMs by placing a metalens in front of each photodetector. A metalens is a flat lens that uses nanostructures on the surface to focus incident light. Metalenses offer similar focusing power to traditional lenses, but with reduced bulk and cost, and can be mass-produced in...
The nEXO experiment aims to discover neutrinoless double beta decay of xenon 136, with a lifetime sensitivity goal of greater than 10^28 years. Compared to using long cables to transmit signals outside of the detector, mounting amplification and digitization circuitry directly on detector submodules reduces noise and improves measurement fidelity. A cryogenic application specific integrated...
The Short-Baseline Near Detector (SBND) is a 112 ton Liquid Argon Time Projection Chamber (LArTPC) that will be part of the Short-Baseline Neutrino (SBN) program at Fermilab. The SBN programme's main goal is to resolve the eV-scale sterile neutrino short-baseline anomaly. SBND will measure the un-oscillated beam flavour composition at an unprecedented number of neutrinos due to its proximity...
The Deep Underground Neutrino Experiment (DUNE) is a leading-edge experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE-Dual Phase (DP) is a 6x6x6 m3 liquid argon time-projection-chamber (LArTPC) operated at the CERN Neutrino Platform in 2019-2020 as a prototype of the DUNE Far Detector. In ProtoDUNE-DP, the scintillation and...
The Deep Underground Neutrino Experiment (DUNE) is an upcoming neutrino physics experiment that will answer some of the most compelling questions in particle physics and cosmology.
The DUNE far detectors employ silicon photomultipliers (SiPMs) to detect light produced by charged particles interacting in a large liquid argon time projection chamber (LArTPC).
The SiPMs are photosensors...
Some WIMP dark matter experiments use liquid argon (LAr) as the target material for its high
scintillation light yield and good background discrimination. Particle interactions in the LAr produce
scintillation light at 128 nm which must go through a wavelength shifting (WLS) material to be
detected by standard photomultiplier tubes. Tetraphenyl-butadiene (TPB) is a common WLS for LAr
based...
In long baseline Neutrino experiments like T2K, NOVA and the future DUNE, the Far Detector includes a Photon Detection System to help identify the physics signals from the noise presented. The signals correspond to the physical processes produced when a neutrino or antineutrino beam is sent from the near detector. When data is taken, one or multiple processes can be presented in a signal, and...